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Abstract

The influence of streambed sediment clogging on macroinvertebrate communities was investigated in the Lemme
creek (NW Italy). To assess how fine sediment accumulation can influence the colonisation process and community
composition of macroinvertebrates, we placed 48 traps in the riverbed. The traps consisted of boxes built with metal
net (mesh 1 cm, height 15 cm, sides 5 cm) covered with nylon net except for the apex, allowing access exclusively from
the top. We created four trap types filled with 100% gravel, 30% sand and 70% gravel, 70% sand and 30% gravel and
100% sand. After 20 and 40 days, we removed 6 traps/type. Macroinvertebrates rapidly colonised the traps, as we
found no significant community differences between the two removal dates. Among the four trap types, we found
significant differences in taxa number and abundance, which both decreased with increasing clogging. Thus, our study
supports the hypothesis that clogging and the accumulation of fine substratum elements strongly affects benthic stream
communities.
r 2007 Elsevier GmbH. All rights reserved.
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Introduction

The interstitial zone plays an important role in the
ecological processes of lotic ecosystem. Thus studying
the interstitial areas in bed sediments (sensu Bretschko,
1992) is of major importance for lotic ecologists to
better understand the physical, chemical and biological
processes that take place in the streambed (Vervier,
Gibert, Marmonier, & Dole-Olivier, 1992). For exam-
ple, within the streambed interstices, organic matter and
nutrients can be retained, transformed and stored
(Gibert, Dole-Olivier, Marmonier, & Vervier, 1990).
e front matter r 2007 Elsevier GmbH. All rights reserved.
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Many ecological processes are based on complex
exchanges between the streambed surface and subsur-
face. In this context, hydraulic gradients at the
streambed surface, depth of the hyporheic zone and
sediment characteristics, such as bed porosity and
hydraulic conductivity, play a major role (Harvey &
Bencala, 1993; White, 1993).

Pioneer studies underlined the importance of bed
sediments for the distribution of stream insects (Wene,
1940). In fact, macroinvertebrates use substrata
for deposition and incubation of eggs, for feeding
(Minshall, 1984), as a shelter from predation (Brusven
& Rose, 1981), refuge from physical disturbances (Dole-
Olivier, Marmonier, & Beffy, 1997; Gayraud, Philippe,
& Maridet, 2000; Palmer, Bely, & Berg, 1992) and

www.elsevier.de/limno
dx.doi.org/10.1016/j.limno.2007.01.002
mailto:fenoglio@unipmn.it


ARTICLE IN PRESS
T. Bo et al. / Limnologica 37 (2007) 186–192 187
during extreme drought events (Fenoglio, Bo, & Bosi,
2006).

Sediment size and depth affect the size of available
interstitial space (Maridet & Philippe, 1995); thus they
are important parameters in studying macroinvertebrate
colonisation and distribution (Rae, 1987). It is likely
that fine sediment accumulations may clog the inter-
stices, reducing interstitial water exchange, lowering the
concentration of dissolved oxygen among the sediments
and finally constraining the movement of some inverte-
brates in the substrata.

In the last decades, human-induced alterations of the
natural morpho-hydrological characteristics have al-
tered the transport–deposition cycle in many rivers, so
that clogging has become an important ecological
problem (Weigelhofer & Waringer, 2003).

Therefore the aims of this experimental study were:
(a) to assess how different amounts of fine sediments
(sand) in a coarse substratum (gravel) could influence
the colonisation process of macroinvertebrates and (b)
to investigate the effect of clogging on macroinverte-
Table 1. Environmental characteristics (mean7SD) in the

stream reach during the study period

Parameter Values

Conductivity (mS) 354.0731.3

Dissolved oxygen (mg/L) 8.7070.27

PH 8.5970.18

Flow velocity (m/s) 0.6570.14

Water temperature (1C) 20.470.1
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Fig. 1. Lemme creek, traps displacement and scheme of the four tra
brate taxonomic richness, abundance and community
composition.
Methods

We experimented in the Lemme creek, a small
tributary (2nd-order stream with moderate slope) of
the Orba River, NW Italy (441 350 4500, 81 510 4100;
altitude 430m a.s.l.). Some abiotic parameters were
measured using portable instruments (Eijkelkamp 13.14
and 18.28) (Table 1).

The studied stream has a good environmental quality,
reaching the first class in the Extended Biotic Index
system (Ghetti, 1997), which corresponds to an envir-
onment without traces of human-inducted alteration. To
assess how different amount of fine sediments in the
substratum can influence colonisation processes and
community composition of macroinvertebrates, we
placed 48 traps in a large and uniform riffle of the
Lemme creek riverbed, using a random distribution
(Fig. 1). Each trap consisted of a box built with metal
net (5 cm long, 5 cm wide and 15 cm high, mesh
width 1 cm, total volume ¼ 0.37 dm3) that was covered
with nylon net (mesh width 250 mm) except for the
apex, allowing access for macroinvertebrates exclusively
from the top of the trap. Traps were individually
numbered: traps from 1 to 12 contained only gravel,
traps from 13 to 24 contained 30% sand and
70% gravel, traps from 25 to 36 contained 30% gravel
and 70% sand and traps from 37 to 48 contained
only sand. The average dimension of the gravel was
Traps 25-36 Traps 37-48

Traps 13-24Traps 1-12

p types (NW Italy 441 350 4500, 81 510 4100; altitude 430m a.s.l.).
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Table 2. Per cent relative abundances of macroinvertebrates

collected in the natural streambed and from traps

Taxa FFG Natural

streambed

(%)

Traps

(%)

Plecoptera

Dinocras cephalotes P 0.21 0.00

Perla marginata P 0.24 0.04

Leuctra spp. Sh 29.8 11.4

Protonemura spp. Sh 0.09 0.04

Ephemeroptera

Centroptilum luteolum Cg 0.00 0.01

Ephemera danica Cg 0.15 0.42

Ecdyonurus spp. Sc 0.96 0.45

Electrogena spp. Sc 0.03 0.13

Paraleptophlebia sp. Cg 0.06 0.00

Habrophlebia sp. Cg 0.71 5.16

Habroleptoides sp. Cg 0.03 0.00

Caenis spp. Cg 0.16 0.54

Baetis spp. Cg 9.70 4.16

Serratella ignita Cg 0.90 0.47

Trichoptera

Sericostoma

pedemontanum

Sh 0.01 0.00

Odontocerum albicorne Sh 0.00 0.01

Hydroptilidae Sc 0.01 0.20

Psychomyidae Cg 0.01 0.12

Polycentropodidae F 0.21 0.90
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45.0mm� 23.0mm� 21.0mm, while the sand measured
meanly 0.25–0.50mm (sensu Ghetti, 1997).

Traps were positioned in the stream on 28 June 2005
in a uniform, 100m-long riffle, with the apex orientated
upward at the same level of the natural stream
substratum, so the depth reached by the traps in the
substratum was the same as their height (15 cm). Traps
were placed randomly in the stream; thus the composi-
tion of traps substratum was not related with the one of
the surrounding natural streambed. After 20 and 40
days, we removed 6 traps of each type. In order to
analyse abundance and composition of the natural
bottom communities, we collected 30 Surber samples,
once a week during the study period, in the same riffle
area where we had placed the traps, using a 0.06m2

Surber sampler (250 mm mesh).
In the laboratory, all organisms were counted and

identified to the species or genus level, except for
Annelida, early instars of some Trichoptera and
Diptera, and others that were identified to the family
level. Each taxon was also assigned to a Functional
Feeding Group (FFG: scrapers – Sc, shredders – Sh,
collectors–gatherers – Cg, filterers – F and predators –
P) according to Merritt and Cummins (1996). Moreover,
a classification of taxa into seven biological and seven
ecological groups was conducted according to the
Usseglio-Polatera, Bournaud, Richoux, and Tachet
(2000) species traits approach.
Goeridae Cg 0.42 0.13

Beraeidae Cg 0.69 0.13

Leptoceridae Cg 2.63 5.86

Hyporhyacophila spp. P 0.01 0.00

Rhyacophila spp. P 0.58 0.07

Cheumatopsyche lepida F 3.92 4.04

Diplectrona felix F 0.13 0.00

Hydropsyche spp. F 7.96 14.2

Wormaldia mediana F 0.56 0.33

Chimarra spp. F 0.81 0.19

Philopotamus spp. F 0.06 0.03

Diptera

Atherix sp. P 0.01 0.03

Tipula sp. Sh 0.16 0.09

Empididae P 0.15 0.03

Chironomidae Cg 5.53 26.8

Ceratopogonidae P 0.86 4.86

Tabanidae P 0.10 0.09

Limoniidae P 0.80 0.36

Simuliidae F 0.78 0.12

Psychodidae P 0.05 0.01

Rhagionidae P 0.01 0.00

Sciomyzidae P 0.01 0.00

Anthomydae P 0.00 0.04

Coleoptera

Helichus substriatum Sh 0.01 0.01

Ochthnebius halbherri Sc 0.03 0.01

Hydraena andrinii Sc 0.01 0.03

Hydraena minutissima Sc 0.03 0.00
Results

In total we collected 14,793 organisms: 7916 macro-
invertebrates belonging to 66 taxa in the riverbed and
6877 macroinvertebrates belonging to 55 taxa in the
traps (Table 2). Mean abundance in the substratum was
4221.8 organisms/m2 (7624.8). Highest values of in-
vertebrate densities were found in coarse substrata,
while sandy and rocky substrata showed lowest den-
sities. In the functional composition of the invertebrate
assemblages, collectors–gatherers were the most repre-
sented FFG (33.4% of all organisms), followed by
shredders (30.1%), predators (19.2%), filterers (14.4%)
and scrapers (2.74%). According to the Usseglio-
Polatera et al. (2000) classification, the most represented
biological groups in the substratum were the ‘e group’
(small or medium sized, short-lived, crawlers with
aquatic respiration and cemented eggs: 54.8%) and the
‘f group’ (medium sized, crawlers, shredders with
aquatic respiration: 39.4%). Considering ecological
groups, the two most abundant groups were ‘B’
(organisms living in rhithronic rheophilous environ-
ments: 37.1%) and ‘C’ (oligotrophic organisms living in
banks and channels of rhitronic and epipotamic, at slow
and medium current velocities: 31.4%).
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Table 2. (continued )

Taxa FFG Natural

streambed

(%)

Traps

(%)

Hydraena spinipes Sc 0.05 0.01

Haenydra truncata Sc 0.16 0.01

Haenydra heterogyna Sc 0.03 0.00

Haenydra devillei Sc 0.04 0.00

Helodidae (larvae) Sh 0.05 0.00

Elminthidae (adults) Cg 11.2 1.13

Elminthidae (larvae) Cg 0.40 0.54

Stenelmis canaliculata Cg 0.00 0.07

Gyrinidae (larvae) P 0.00 0.10

Dytiscidae (adults) P 0.01 0.00

Heteroptera

Velia sp. P 0.06 0.03

Micronecta sp. P 0.06 0.00

Odonata

Calopteryx virgo P 0.00 0.03

Onychogomphus

forcipatus

P 0.09 0.17

Boyeria irene P 0.01 0.03

Megaloptera

Sialis fuliginosa P 0.03 0.00

Planipennia

Osmylus fulvicephalus P 0.01 0.00

Tricladida

Dugesia sp. P 0.21 0.03

Gastropoda

Ancylus fluviatilis Sc 1.41 0.06

Hirudinea

Dina lineata P 0.01 0.00

Annelida

Eiseniella tetraedra Cg 0.09 0.03

Lumbricidae Cg 0.11 0.01

Lumbriculidae Cg 0.28 0.15

Naididae Cg 0.37 0.11

Tubificidae Cg 0.03 0.00

Arachnida

Hydracarina P 15.7 14.8

FFG: Functional Feeding Groups (Cg ¼ collectors–gatherers; F ¼

filterers; P ¼ predators; Sc ¼ scrapers; Sh ¼ shredders).
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Fig. 2. (a) Abundance of invertebrates in the traps with

different granulometry (mean7SE); (b) taxa richness in the

traps with different granulometry (mean7SE).
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After exposure, interstitial traps were rapidly colo-
nised, regarding both taxa richness and organism
abundance, as we detected no significant differences
between the two sampling dates (taxa richness: Mann–
Whitney U-test ¼ 263.5, P ¼ 0.61; invertebrate abun-
dance: U ¼ 243.5, P ¼ 0.36).

However, comparing the invertebrate assemblages
among the four trap types, we detected evident
differences in both taxa and invertebrate numbers.
Interestingly, the abundance of organisms (Fig. 2a)
and the number of taxa (Fig. 2b) were inversely related
to the total amount of sand. Differences among traps
were significant considering both organism abundance
(Kruskal–Wallis test ¼ 14.67, P ¼ 0.002) and taxa rich-
ness (Kruskal–Wallis test ¼ 7.61, P ¼ 0.05).

Collectors–gatherers were the most represented FFG
in the traps (50.4% of total), followed by predators
(21.8%) and filterers (14.3%), while shredders (12.4%)
and scrapers (0.98%) were less represented.

Comparing 100% gravel-filled and 100% sand-filled
traps, densities of filterers and scrapers feeding groups
were reduced by 44.0% and 12.6%, respectively. In
particular the importance of filterers was inversely
related with the total amount of sand (Kruskal–Wallis
Test ¼ 12.3, P ¼ 0.006). The most represented biologi-
cal group in the traps was the ‘e group’ (66.8%),
followed by ‘f group’ (23.3%), ‘c group’ (7.50%), ‘h
group’ (1.64%), ‘g group’ (0.39%) and ‘d group’
(0.33%). In the different trap types, the importance of
some biological groups, such as ‘e’ and ‘f’,’ decreased
with the increase of sand, while on the contrary sandy
substrata were positively related with the abundance of
‘h’ organisms (multivoltine, burrowers or interstitial
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microphagous). Considering the ecological group com-
position of the traps, we detected no significant
differences, with the exception of ‘C’ organisms
(Fig. 3), that were significantly more abundant in
substrata with more than 70% of gravel (Kruskal–
Wallis test ¼ 9.84, P ¼ 0.02).

Analysing the taxonomic composition of the traps, we
evidenced some interesting differences among trap
types: for example large predators, such as Perla

marginata, were found only in traps filled with 70% or
100% gravel, avoiding more clogged substrata. Further-
more, rheostenic and litophilous elements, such as
Ephemeroptera Heptageniidae, were almost exclusively
found in gravel-filled traps (75% of specimens found in
traps with more than 70% of gravel), or occurred there
in highest abundances (Fig. 4). On the contrary, the
number of Oligochaeta tends to increase in the traps
filled with conspicuous amounts of fine elements.
Discussion

The Lemme is a typical Apenninic creek, with almost
no human-derived impacts and with high levels of
invertebrate biodiversity. Taxonomic richness and in-
vertebrate abundances in the substratum were in the
range of other Apenninic environments (Fenoglio,
Agosta, Bo, & Cucco, 2002), such as functional,
biological and ecological composition of the assem-
blages (Bo, Cucco, Fenoglio, & Malacarne, 2006).

The composition of the bed sediment plays a key role
in the colonisation mechanism, composition and abun-
dance of benthic community. Some studies found that in
streams with high sediment porosity, the number of
invertebrates beneath the top sediment layer may exceed
that in the sediment surface by far (Bretschko, 1981;
Maridet & Philippe, 1995). Others (Strommer & Smock,
1989; Wagner, Schmidt, & Marxsen, 1993) found
extreme low organism densities in interstitial habitats
if those had high quantities of sand and low porosity.
Walling and Amos (1999) evidenced that the increase of
turbidity and sedimentation can represent a serious
damage for salmonids in chalk streams of southern
England, by reducing the supply of oxygen to the
hatching eggs, as well as degrading other characteristics
of the channel habitat.

Correspondingly, our traps filled with 100% of sand,
i.e. the most clogged ones, provided always the poorest
interstitial habitat quality, probably because tight
packing of sand grains reduced the trapping of organic
detritus, limited the availability of oxygen and lowered
the accessible pore space for most of the macroinverte-
brates.

In our study, the effect of clogging is very evident and
affected organisms belonging to several functional,
ecological and biological groups. In particular, the
abundance of filterers is strongly reduced by the
accumulation of fine elements, probably because of the
reduction of water circulation but also because large,
semi-voltine, crawlers organisms were not able to
colonise clogging environments. The taxonomical,
ecological and functional composition of the interstitial
assemblages was significantly changed by the accumula-
tion of sand in the substratum of the studied stream:
only few groups, such as Oligochaeta, benefited from the
clogging process.
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Some recent studies have pointed out that the
macroinvertebrate fauna of lotic systems can be affected
by unnatural, human-induced sedimentation by differ-
ent indirect and direct effects. Direct effects are, for
example, the loss of microhabitat (Rae, 1987), loss of
access to trophic resources (Lenat, Penrose, & Eagleson,
1981) and the damage to respiratory systems of
organisms (Lemly, 1982). Indirect effects include, for
example, the change of the ecological processes that are
on the basis of autochthonous and allochthonous
sources of energy of the system (Quinn, Davies-Colley,
Hickey, Vickers, & Ryan, 1992).

Alteration of stream morphology and human activ-
ities in streambeds can increase the clogging and
sedimentation process, altering the granulometry of
large parts of streambeds and reducing the biological
diversity of stream communities. In Apenninic streams
of Northwestern Italy, there was a dramatic increase in
the regulation and alteration of many lotic systems.
After the floods of 1994 and 2000 (Fenoglio, Battegaz-
zore, & Morisi, 2003), a lot of rivers and creeks in this
area were morphologically modified, with unnatural
increases of sedimentation also in low-order streams.

This study supports the hypothesis that clogging and
the increase of sedimentation of fine substratum
elements strongly affects the benthic stream invertebrate
community, and that this process can diminish the
biological diversity of Apenninic lotic environments.
Future research should investigate the importance of the
organic components in the clogging of the interstitial
spaces of streambed substrata.
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